3.05. The Code is amended in Division B,(1) in Table 1.3.1.2. of Article 1.3.1.2.,
(a) by inserting the following references:
“
|ASME | A112.1.2-2004 | Air Gaps in Plumbing Systems |2.2.10.22.(1) |
|ASME | A112.6.3-2001 | Floor and Trench Drains |2.2.10.19.(2) |
|ASME | A112.6.4-2003 | Roof, Deck, and Balcony Drains |2.2.10.20.(2) |
”
before the reference:
“
|ANSI/ | B16.3-1998 | Malleable-Iron Threaded Fittings |2.2.6.6.(1) |
|ASME | | | |
”;
(b) by inserting the following references:
“
|ANSI/CSA | ANSI Z21.10.1- | Gas Water Heaters - Volume I, Storage|2.2.10.13.(1) |
| | 2004/CSA 4.1- | Water Heaters With Input Ratings of | |
| | 2004 | 75,000 Btu Per Hour or Less | |
| | | | |
|ANSI/CSA | ANSI Z21.10.3- | Gas Water Heaters - Volume III, |2.2.10.13.(1) |
| | 2004/CSA 4.3- | Storage Water Heaters With Input | |
| | 2004 | Ratings Above 75,000 Btu Per Hour, | |
| | | Circulating and Instantaneous | |
”
before the reference:
“
|ANSI/CSA | ANSI Z21.22- | Relief Valves for Hot Water Supply |2.2.10.11.(1) |
| | 1999/CSA 4.4-M99| Systems | |
”;
(c) by inserting the following references:
“
|ASTM | A268/A268M-05a | Standard Specification for Seamless |2.2.6.10.(1) |
| | | and Welded Ferritic and Martensitic | |
| | | Stainless Steel Tubing for General | |
| | | Service | |
| | | | |
|ASTM | A269-07 | Standard Specification for Seamless |2.2.6.10.(1) |
| | | and Welding Austenitic Stainless | |
| | | Steel Tubing for General Service | |
| | | | |
|ASTM | A270-03a | Standard Specification for Seamless |2.2.6.10.(1) |
| | | and Welded Austenitic Stainless Steel| |
| | | Sanitary Tubing | |
| | | | |
|ASTM | A312/A312M-05a | Standard Specification for Seamless, |2.2.6.10.(1) |
| | | Welded, and Heavily Cold Worked | |
| | Austenitic Stainless Steel Pipes | |
”
after the reference:
“
|ASTM | A53/A53M-02 | Pipe, Steel, Black and Hot-Dipped, |2.2.6.7.(4) |
| | | Zinc - Coated, Welded and Seamless | |
”;
(d) by inserting the following references:
“
_________________________________________________________________________________
| | | | |
|AWS | AWS A5.8/ | Specification for Filler Metals for |2.2.9.2.(1) |
| | A5.8M: 2004 | Brazing and Braze Welding | |
| | | | |
|BNQ | NQ 2622-126 | Reinforced Concrete and Unreinforced |2.2.5.3.(1) |
| | (1999) | Concrete Pipes and Monolithic Lateral| |
| | | Connections for Evacuation of | |
| | | Domestic Wastewater and Storm Water | |
| | | | |
|BNQ | NQ 3623-085 | Ductile-Iron Pipes for Pressure |2.2.6.4.(1) |
| | (2002) | Piping Systems - Characteristics and | |
| | | Test Methods | |
| | | | |
|BNQ | NQ 3624-027 | Tuyaux et raccords en polyéthylène |2.2.5.5.(1) |
| | (2000) | (PE) - Tuyaux pour le transport des | |
| | (Modificatif | liquides sous pression | |
| | N° 1/03) | - Caractéristiques et méthodes | |
| | | d’essais | |
| | | | |
|BNQ | NQ 3624-120 | Polyethylene (PE) Plastic Pipe and |2.2.5.10.(1) |
| | (2006) | Fittings - Smooth Inside Wall Open | |
| | | or Closed Profile | |
| | | Pipes for Storm Sewer and Soil | |
| | | Drainage - Characteristics and Test | |
| | | Methods | |
| | | | |
|BNQ | NQ-3624-130 | Unplasticized Poly(Vinyl Chloride) |2.2.5.10.(1) |
| | (1997) | (PVC) Rigid Pipe and Fittings, | |
| | (Modificatif | 150 mm in Diameter or Smaller, for | |
| | N° 1/90) | Underground Sewage Applications | |
| | (Modificatif | | |
| | N° 2/01) | | |
| | | | |
|BNQ | NQ-3624-135 | Unplasticized Poly(Vinyl Chloride) |2.2.5.10.(1) |
| | (2000) | [PVC-U] Pipe and Fittings - Pipes of | |
| | | 200 mm to 600 mm in Diameter for | |
| | | Underground Sewage and Soil Drainage | |
| | | - Characteristics and Test Methods | |
| | | | |
|BNQ | NQ 3624-250 | Unplasticized Poly(Vinyl Chloride) |2.2.5.8.(1) |
| | (2000) | [PVC-U] Pipe and Fittings - Rigid | |
| | | Pipe for Pressurized Water Supply | |
| | | and Distribution - Characteristics | |
| | | and Test Methods | |
| | | | |
|BNQ | NQ 3632-670 | Backwater and Check Valves for |2.2.10.18.(1) |
| | (2005) | Sewage Systems - Characteristics | |
| | | and Test Methods | |
|_________|_________________|______________________________________|______________|
”
after the reference:
“
|ASTM | F714-03 | Polyethylene (PE) Plastic Pipe |2.2.5.6.(1) |
| | | (SCR-PR) Based on Outside Diameter | |
|_________|_________________|______________________________________|______________|
”;
(d.1) by replacing the reference:
“
|CSA | CAN/CSA- | Reduced Pressure Principle (RP) |2.2.10.10.(1) |
| | B64.4-01 | Backflow Preventers | |
”
by the following reference:
“
|CSA | CAN/CSA- | Reduced Pressure Principle (RP) |2.2.10.10.(1) |
| | B64.4-01 | Backflow Preventers |2.6.2.4.(2) |
| | | |2.6.2.4.(4) |
”;
(d.2) by replacing the reference:
“
|CSA | CAN/CSA- | Double Check Valve (DCVA) |2.2.10.10.(1) |
| | B64.5-01 | Backflow Preventers | |
”
by the following reference:
“
|CSA | CAN/CSA- | Double Check Valve (DCVA) |2.2.10.10.(1) |
| | B64.5-01 | Backflow Preventers |2.6.2.4.(2) |
”;
(d.3) by replacing the reference:
“
|CSA | CAN/CSA- | Dual Check Valve (DuC) |2.2.10.10.(1) |
| | B64.6-01 | Backflow Preventers | |
”
by the following reference:
“
|CSA | CAN/CSA- | Dual Check Valve (DuC) |2.2.10.10.(1) |
| | B64.6-01 | Backflow Preventers |2.6.2.4.(2) |
”;
(e) by replacing the reference:
|CSA | CAN/CSA- | Manual for the Selection and |2.6.2.1.(3)(2)|
| | B64.10-01 | Installation of Backflow Prevention | |
| | | Devices | |
”
by the following references:
“
| | | | |
|CSA | CAN/CSA- | Manual for the Selection and |2.6.2.1.(3)(2)|
| | B64.10-01 | Installation of Backflow Prevention |2.6.2.1.(4) |
| | (including | Devices | |
| | Supplement | | |
| | B64.10S1-04) | | |
| | | | |
|csa | CAN/CSA- | Manual for the Maintenance and Field |2.6.2.1.(4) |
| | B64.10.1-01 | Testing of Backflow Prevention | |
| | (including | Devices | |
| | Supplement | | |
| | B64.10.1S1-04 | | |
”;
(f) by replacing the reference:
“
|CSA | CAN/CSA-B70-02 | Cast iron Soil Pipe, Fittings and |2.2.6.1.(1) |
| | | Means of Joining |2.4.6.4.(2) |
”
by the following reference:
“
|CSA | CAN/CSA-B70-06 | Cast Iron Soil Pipe, Fittings, |2.2.6.1.(1) |
| | | and Means of Joining |2.6.10.18.(1) |
| | | | |
|CSA | CAN/CSA-B79-05 | Floor Drains, Area Drains, Shower |2.2.10.19.(1) |
| | | Drains, and Cleanouts in Residential | |
| | | Construction | |
”;
(g) by replacing the reference:
“
|CSA | CSA-B125.3-05 | Plumbing Fittings |2.2.10.6.(1) |
| | | |2.2.10.7.(2) |
| | | |2.2.10.10.(2) |
”
by the following reference:
“
|CSA | CSA-B125.3-05 | Plumbing Fittings |2.2.10.6.(1) |
| | | |2.2.10.7.(2) |
| | | |2.2.10.10.(2) |
| | | |2.2.10.21.(1) |
”;
(h) by replacing the reference:
“
|CSA | CAN/CSA- | Crosslinked Polyethylene/Aluminum/ |2.2.5.14.(1) |
| | B137.10-02 | Crosslinked Polyethylene Composite | |
| | | Pressure-Pipe Systems | |
”
by the following reference:
“
|CSA | CAN/CSA- | Crosslinked Polyethylene/Aluminum/ |2.2.5.13.(3) |
| | B137.10-02 | Crosslinked Polyethylene Composite |2.2.5.14.(1) |
| | | Pressure-Pipe Systems | |
”;
(i) by inserting the following reference:
“
|CSA | CSA B140.12-03 | Oil-Burning Equipment: Service |2.2.10.13.(1) |
| | | Water Heaters for Domestic Hot Water,| |
| | | Space Heating, and Swimming Pools | |
”
after the reference:
“
|CSA | CAN/CSA- | Polypropylene (PP-R) Pipe and |2.2.5.14.(1) |
| | B137.11-02 | Fittings for Pressure Applications |2.2.5.15.(1) |
”;
(j) by replacing the reference:
“
|CSA | CAN/CSA- | ABS Drain, Waste, and Vent Pipe and |2.2.5.10.(1) |
| | B181.1-02 | Pipe Fittings |2.2.5.11.(1) |
| | | |2.2.5.12.(1) |
| | | |2.4.6.4.(2) |
”
by the following reference:
“
|CSA | CAN/CSA- | ABS Drain, Waste, and Vent Pipe and |2.2.5.10.(1) |
| | B181.1-02 | Pipe Fittings |2.2.5.11.(1) |
| | | |2.2.5.12.(1) |
| | | |2.2.10.18.(1) |
”;
(k) by replacing the reference:
“
|CSA | CAN/CSA- | PVC Drain, Waste, and Vent Pipe and |2.2.5.10.(1) |
| | B181.2-02 | Pipe Fittings |2.2.5.11.(1) |
| | | |2.2.5.12.(1) |
| | | |2.4.6.4.(2) |
”
by the following reference:
“
|CSA | CAN/CSA- | PVD Drain, Waste, and Vent Pipe and |2.2.5.10.(1) |
| | B181.2-02 | Pipe Fittings |2.2.5.11.(1) |
| | | |2.2.5.12.(1) |
| | | |2.2.10.18.(1) |
”;
(1) by replacing the reference:
“
|CSA | CAN/CSA- | Plastic Drain and Sewer Pipe and |2.2.5.10.(1) |
| | B182.1-02 | Pipe Fittings |2.4.6.4.(2) |
”
by the following reference:
“
|CSA | CAN/CSA- | Plastic Drain and Sewer Pipe and |2.2.5.10.(1) |
| | B182.1-02 | Pipe Fittings |2.2.10.18.(1) |
”;
(m) by inserting the following references:
“
|CSA | CAN/CSA-B481 | Grease Interceptors |2.2.3.2.(3) |
| | Serie 07 | | |
| | | | |
|CSA | CAN/CSA- B4 | Drinking Water Treatment Systems |2.2.10.17.(1) |
| | B483.1-07 | |2.2.10.17.(2) |
| | | |2.2.10.17.(3) |
| | | |2.2.10.17.(4) |
| | | |2.2.10.17.(5) |
”
after the reference:
“
|CSA | CAN/CSA-356-00 | Water Pressure Reducing Valves for |2.2.10.12.(1) |
| | | Domestic Water Systems Supply | |
”;
(n) by inserting the reference:
“
|CSA | CAN/CSA- | Construction and Test of Electric |2.2.10.13.(1) |
| | C22.2 | Storage-Tank Water Heaters | |
| | 110-94 (R2004) | | |
”
after the reference:
“
|CSA | CAN/CSA-B602 | Mechanical Couplings for Drain, |2.2.10.4.(2) |
| | | Waste, and Vent Pipe and Sewer Pipe | |
”;
(o) by inserting the following references:
“
_________________________________________________________________________________
| | | | |
|MSS | SP-58-2002 | Pipe Hangers and Supports - |2.2.10.23(1) |
| | | Materials, Design, and Manufacture | |
| | | | |
|ANSI/MSS | SP-69-2003 | Pipe hangers and Supports - |2.3.4.1.(4) |
| | | Selection and Application | |
| | | | |
|NSF | NSF/ANSI | Drinking water Treatment Units - |2.2.10.17(4) |
| | 53-2007a | Health Effects | |
| | | | |
|NSF | NSF/ANSI | Ultraviolet Microbiological Water |2.2.10.17.(1) |
| | 55-2007 | Treatment Systems | |
| | | | |
|NSF | NSF/ANSI | Drinking Water Distillation Systems |2.2.10.17.(1) |
| | 62-2004 | | |
|_________|_________________|______________________________________|______________|
”
after the reference:
“
|CSA | G401-01 | Corrugated Steel Pipe Products |2.2.6.8.(1) |
|_________|_________________|______________________________________|______________|
”;
(2) in Article 1.3.2.1
(a) by inserting the following after “ASTM… American Society for Testing and Materials International (100 Barr Harbor Drive, West Conshohocken, Pennsylvania 19428-2959 U.S.A.; www.astm.org)”:
“AWS...American Welding Society (550 N.W. LeJeune Road, Miami, Florida 33126 U.S.A.; www.aws.org)”;
(b) by inserting the following after “AWWA…American Water Works Association (6666 West Quincy Avenue, Denver, Colorado 80235 U.S.A.; www.awwa.org)”:
“BNQ...Bureau de normalisation du Québec (333, rue Franquet, Québec, (Québec) G1P 4C7; www.bnq.qc.ca)”;
(c) by replacing “NBC… National Building Code of Canada 2005 (see CCBFC)” by the following:
NBC... National Building Code of Canada within the meaning of section 1.01 of Chapter I of the Construction Code, as amended by this Chapter”;
(d) by inserting the following after “MSC... Meteorological Service of Canada [formerly AES - Atmospheric Environment Service] (Environment Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4; www.msc-smc.ec.gc.ca)”:
“Manufacturers Standardization Society of the Valve and Fittings Industry (127 Park Street, N.E., Vienna, Virginia 22180 U.S.A.; www.mss-hq.com)”;
(e) by inserting the following after “NPC... National Plumbing Code of Canada 2005 (see CCBFC)” and “NRC… National Research Council of Canada (Ottawa, Ontario K1A 0R6; www.nrc-cnrc.gc.ca)” respectively:
“NQ... Québec standard” and;
“NSF...NSF International (PO Box 130140, Ann Arbor, Michigan 48113-0140, U.S.A.; www.nsf.com)”;
(3) in Article 2.1.2.3., by replacing “Every” in Sentence (1) by “Except as provided in Clause (a) of Sentence 2.7.3.2 (1), every”;
(4) by adding the following after Subsection 2.1.3.:
“2.1.4. Structural Movement
2.1.4.1. Structural Movement
(1) Plumbing systems of buildings subject to Chapter I of the Construction Code and to which Part 4 of Division B of the NBC applies shall be designed and installed to accommodate the maximum relative structural movement provided for in the construction of the building. (See Article 4.1.3.5., Subsection 4.1.8., Sentence 4.1.3.3.(2) and Article A-6.2.1.3. of the NBC for information on the types of structural movements that may be encountered.)”;
(5) in article 2.2.3.1., by adding the following after Sentence (5):
“(6) A deep trap seal depth shall be not less than 100 mm.”;
(6) in Article 2.2.3.2., by adding the following after Sentence (2):
“(3) Every grease interceptor shall conform to CSA B481 Series, Grease Interceptors.”;
(6.1) in Article 2.2.4.2., by replacing Sentence (1) by the following:
“(1) Subject to Article 2.4.3.7., a single or double sanitary T fitting shall not be used in a nominally horizontal soil-or-waste pipe, except that a single sanitary T fitting may be used to connect a vent pipe.”;
(7) in Article 2.2.5.3., by inserting the following after Clause (b) of Sentence (1):
“(c) NQ 2622-126, Tuyaux et branchements latéraux monolithiques en béton armé et non armé pour l’évacuation des eaux d’égout domestique et pluvial.”;
(8) in Article 2.2.5.5., by replacing Sentence (1) by the following:
“(1) Polyethylene water pipe, tubing, and fittings shall conform to Series 160 of
(a) CAN/CSA-B137.1, Polyethylene Pipe, Tubing, and Fittings for Cold-Water Pressure Services, or
(b) NQ 3624-027, Tuyaux et raccords en polyéthylène (PE) - Tuyaux pour le transport des liquides sous pression - Caractéristiques et méthodes d’essais.”;
(9) in Article 2.2.5.8., by replacing Clause (a) of Sentence (1) by the following:
“(a) conform to
(i) CAN/CSA B137.3, Rigid Polyvinyl Chloride (PVC) Pipe for Pressure Applications, or
(ii) NQ 3624-250, Unplasticized Poly(Vinyl Chloride) [PVC-U] Pipe and Fittings - Rigid Pipe for Pressurized Water Supply and Distribution - Characteristics and Test Methods, and”;
(10) in Article 2.2.5.10.,
(a) by striking out “or” at the end of Clause (g) of Sentence (1);
(b) by adding the following after Clause (h) of Sentence (1):
“(i) NQ 3624-120, Polyethylene (PE) Plastic Pipe and Fittings - Smooth Inside Wall Open or Closed Profile Pipes for Storm Sewer and Soil Drainage - Characteristics and Test Methods,
(j) NQ 3624-130, Tuyaux et raccords rigides en poly (chlorure de vinyle) (PVC) non plastifié, de diamètre égal ou inférieur à 150 mm, pour égouts souterrains, or
(k) NQ 3624-135, Unplasticized Poly(Vinyl Chloride) [PVC-U] Pipe and Fittings - Pipes of 200 mm to 600 mm in Diameter for Underground Sewage and Soil Drainage - Characteristics and Test Methods.”;”;
(11) in Article 2.2.5.13.,
(a) by inserting “with a nominal pressure not more than 690 kPa and a nominal temperature not more than 82 °C” after “PE/AL/PE pipe and fittings” in Sentence (2);
(b) by adding the following after Sentence (2):
“(3) PE/AL/PE composite pipe with a nominal pressure not less than 690 kPa and a nominal temperature not less than 82 °C are permitted to be used in a hot water system with connections conforming to CAN/CSA-B137.10, Crosslinked Polyethylene/Aluminum/Crosslinked Polyethylene Composite Pressure-Pipe Systems.”;
(12) in Article 2.2.6.4., by replacing Sentence (1) by the following:
“(1) Cast-iron water pipes shall conform to
(a) ANSI AWWA-C151/A21.51, Ductile-Iron Pipe, Centrifugally Cast, for Water, or
(b) NQ 3623-085, Ductile-Iron Pipes for Pressure Piping Systems - Characteristics and Test Methods.”;
(13) by adding the following after Article 2.2.6.9.:
“2.2.6.10. Stainless Steel Pipes
(1) Stainless steel pipe and fittings shall conform to
(a) ASTM-A268/A268M, Standard Specification for Seamless and Welded Ferritic and Martensitic Stainless Steel Tubing for General Service,
(b) ASTM-A269, Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service,
(c) ASTM-A270, Standard Specification for Seamless and Welded Austenitic Stainless Steel Sanitary Tubing, or
(d) ASTM-A312/A312M, Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes.”;
(14) in Article 2.2.9.2.,
(a) by replacing the title “Solders and Fluxes” by “Solders, Fluxes and Brazing Alloys”;
(b) by replacing Sentence (4) by the following:
“(4) Alloys used for brazing shall conform to AWS A5.8/A5.8M, Specification for Filler Metals for Brazing and Braze Welding, within the BCuP range, depending on the recommended use.”;
(c) by striking out Sentence (5);
(15) in Article 2.2.10.5., by inserting “, except at the point of connection to a standpipe system” after “water systems” in Sentence (1);
(16) in Article 2.2.10.13.,
(a) by striking out “Solar Domestic” in the title;
(b) by replacing Sentence (1) by the following:
“(1) Service water heaters shall conform to
(a) ANSI Z21.10.1/CSA 4.1, Gas Water Heaters - Volume I, Storage Water Heaters With Input Ratings of 75,000 Btu Per Hour or Less,
(b) ANSI Z21.10.3/CSA 4.3, Gas Water Heaters - Volume III, Storage Water Heaters With Input Ratings Above 75,000 Btu Per Hour, Circulating and Instantaneous,
(c) CAN/CSA-C22.2 No. 110, Construction and Test of Electric Storage-Tank Water Heaters,
(d) CSA B140.12, Oil-Burning Equipment: Service Water Heaters for Domestic Hot Water, Space Heating, and Swimming Pools, or
(e) CAN/CSA-F379.1, Solar Domestic Hot Water Systems (Liquid to Liquid Heat Transfer).”;
(17) by adding the following after Article 2.2.10.16.:
“2.2.10.17. Potable Water Treatment Unit
(1) Potable water disinfection units using ultraviolet designed to meet the requirements of the Regulation respecting the quality of drinking water, (chapter Q-2, r. 40), shall conform to one of the following standards:
(a) NSF/ANSI 55, Ultraviolet Microbiological Water Treatment Systems, or
(b) CAN/CSA B483.1, Drinking Water Treatment Systems, if they are designed to be installed at the point of use.
(2) Reverse osmosis potable water treatment systems installed at the point of use and designed to meet the requirements of the Regulation respecting the quality of drinking water shall conform to CAN/CSA B483.1, Drinking Water Treatment Systems.
(3) Potable water distillation systems designed to meet the requirements of the Regulation respecting the quality of drinking water shall conform to one of the following standards:
(a) NSF/ANSI 62, Drinking Water Distillation Systems; or
(b) CAN/CSA B483.1, Drinking Water Treatment Systems, if they are designed to be installed at the point of use.
(4) Potable water treatment units not referred to in Sentences (1) to (3) and designed to meet the requirements of the Regulation respecting the quality of drinking water shall conform to one of the following standards:
(a) NSF/ANSI 53, Drinking Water Treatment Units - Health Effects, or
(b) CAN/CSA B483.1, Drinking Water Treatment Systems, if they are designed to be installed at the point of use.
(5) Potable water treatment units not referred to in Sentences (1) to (4) shall conform to CAN/CSA B483.1, Drinking Water Treatment Systems.”;
2.2.10.18. Backwater Valves
(1) Backwater valves shall conform to
(a) CAN/CSA-B70, Cast Iron Soil Pipe, Fittings, and Means of Joining,
(b) CAN/CSA-B181.1, ABS Drain, Waste, and Vent Pipe and Pipe Fittings,
(c) CAN/CSA-B181.2, PVC Drain, Waste, and Vent Pipe and Pipe Fittings,
(d) CAN/CSA-B182.1, Plastic Drain and Sewer Pipe and Pipe Fittings,
(e) NQ 3632-670, Backwater and Check Valves for Sewage Systems.
2.2.10.19. Floor Drains and Shower Drains
(1) Floor drains, including emergency floor drains, and shower drains installed in an individual house shall conform to CSA-B79, Floor Drains, Area Drains, Shower Drains, and Cleanouts in Residential Construction.
(2) Floor drains, including emergency floor drains, and shower drains installed in an occupancy other than an individual house shall conform to ASME A112.6.3, Floor and Trench Drains.
2.2.10.20. Roof Drains
(1) Roof drains shall conform to ASME A112.6.4, Roof, Deck, and Balcony Drains.
2.2.10.21. Trap Seal Primer Devices
(1) Trap seal primer devices shall conform to CAN/CSA-B125.3, Plumbing Fittings.
2.2.10.22. Air Gaps
(1) Prefabricated air gaps shall conform to ASME A112.1.2, Air Gaps in Plumbing Systems.
2.2.10.23. Pipe Hangers and Supports
(1) Prefabricated pipe hangers and supports shall conform to MSS SP-58, Pipe Hangers and Supports - Materials, Design, and Manufacture.”;
(18) in Article 2.3.3.10., by adding the following after Sentence (1):
“(2) Except as required by Sentence (3), underground copper piping joints shall be composed of flared or compression joints or be braze-welded.
(3) Compression joints shall not be used underground inside a building.”;
(19) in Article 2.3.4.1.,
(a) by inserting “and every valve” after “fixture” in Sentence (3);
(b) by adding the following after Sentence (3):
“(4) Pipe hangers and supports shall be selected according to ANSI/MSS SP-69, Pipe Hangers and Supports - Selection and Application.”;
(20) in Article 2.4.2.1.,
(a) by striking out “or” at the end of Sublause (v) of Sentence (1);
(b) by inserting the following after Subclause (vi) of Clause (e) of Sentence (1):
“(vii) a drain or overflow from a swimming or wading pool and deck floor drains, or
(viii) a drain from an elevator, dumbwaiter or elevating device pit.”;
(c) by replacing Sentence (2) by the following:
“(2) Where the upper vertical part of an offset soil-or-waste stack receives water from fixtures from more than one storey, a connection in that offset soil-or-waste stack shall not be less than
(a) 1.5 m downstream from the base of the upper section of the soil-or-waste stack or from another connection receiving sewage from another soil-or-waste stack connected to the offset, and
(b) 600 mm higher or lower than the nominally horizontal offset in the upper or lower vertical section of an offset soil-or-waste stack.
(See Appendix A.)”;
(d) by adding the following after Sentence (4):
“(5) Every connection at the bottom of a soil-or-waste stack shall not be less than
(a) 1.5 m in a building drain or a branch receiving sewage from the soil-or-waste stack,
(b) 600 mm from the top of the building drain or branch to which the soil-or-waste stack is connected.
(See Appendix A.)
(6) Every trap arm of a floor drain or a fixture without a flushing system shall have a nominally horizontal part not less than 450 mm in developed length, measured between the trap and its connection to a nominally horizontal soil-or-waste pipe. The developed length of the trap arm of a floor drain shall be increased to 1.5 m if it is connected not more than 3 m downstream from the bottom of a soil-or-waste stack or a leader.
(See Appendix A.)
(7) If a soil-or-waste pipe receives sewage containing detergent suds, no other soil-or-waste pipe shall be connected to the soil-or-waste pipe near a change of direction of the soil-or-waste pipe of more than 45°, over a length not less than
(a) 40 times the size of the soil-or-waste pipe receiving the sewage containing the detergent suds before changing direction, or
(b) 10 times the size of the soil-or-waste pipe receiving the sewage containing the detergent suds after changing direction.
(See Appendix A.)
(8) Where a vent pipe is connected into one of the detergent suds zones of a soil-or-waste pipe referred to in Sentence (7), no other vent pipe shall be connected to that vent pipe over a length equal to 40 times the size of the soil-or-waste pipe, measured from a change of direction.
(See Appendix A.)”;
(21) by adding the following after Article 2.4.3.6.:
“2.4.3.7. Retention Pit
(1) A retention pit shall be made of concrete or be approved in accordance with Article 2.2.3.1. of Division C. It must be made in one piece, be leakproof and smooth inside. Its length shall not be less than 600 mm and its minimum width shall not be less than 450 mm, the length being taken in the direction of its fixture drain. A round retention pit shall be not less than 600 mm in size.
(2) The fixture drain of the retention pit shall be not less than 3 in in size and be protected by a reversed sanitary T fitting with a cleanout at the end or by a deep seal trap with cleanout. The fixture drain shall be 4 in in size if the retention pit receives storm water. Despite the foregoing, for a single-family house, the fixture drain may be 3 in in size. No mechanical fitting shall be used inside a retention pit.
(3) A reversed sanitary T fitting shall be located inside the retention pit and the deep seal trap may be located inside or outside the retention pit. In the last case, the trap cleanout shall be extended to the floor level.
(4) The lower end of the reversed sanitary T fitting shall be placed 200 mm or more from the bottom of the retention pit. For a deep seal trap, the upper end of the trap shall be placed not less than 300 mm from the bottom of the retention pit.
(5) The retention pit shall be covered, at the floor or ground level, by a cast iron or steel cover not less than 6 mm thick or any other material conforming to the Code.
(6) The fixture drain of a retention pit exposed to frost shall have a trap inside the building, unless it drains into another retention pit that is not exposed.
(7) The fixture drain of a retention pit shall be directly connected to the sanitary drainage system and drain into it by gravity or in the manner described in Article 2.4.6.3.
(8) The invert of a discharge pipe connected to a retention pit shall be higher than the crown of the fixture drain.
(9) A retention pit with a fixture drain 4 in in size for a draining area of 370 m2 shall be provided. For a fixture drain more than 4 in in size, the drained area may be increased by 280 m2 by additional inch.
(10) A check valve is permitted to be installed inside a retention pit provided it is extended by a length equal to the length of the valve.
(11) The requirements relating to the fall and ventilation of trap arms do not apply to the fixture drain serving a retention pit.”;
(22) by replacing Article 2.4.5.3. by the following:
“2.4.5.3. Connection of Subsoil Drainage Pipe to a Drainage System
(1) Where a subsoil drainage pipe is connected to a drainage system, the connection shall be made on the upstream side of a trap with a cleanout, a trapped sump or a retention pit. (See Appendix A.)”;
(23) in Article 2.4.5.4., by adding the following after Sentence (1):
“(2) No sanitary drainage system or combined building drain shall have a building trap.”;
(24) in Article 2.4.5.5., by adding the following after Sentence (1):
“(2) Water from the trap seal of a floor drain in a dwelling unit need not be maintained by a trap seal primer.
(See Appendix A.)”;
(25) in Article 2.4.6.4., by replacing Sentence (2) by the following:
“(2) A backwater valve may be installed in a building drain if
(a) it is of a “normally open” design, and
(b) it does not serve more than one dwelling unit.”;
(26) by striking out Article 2.4.6.5.;
(27) in Article 2.5.2.1.,
(a) by replacing “Table 2.5.2.1.” in Clause (a) of Sentence (1) by “Article 2.5.8.1.”;
(b) by replacing Clause (d) of Sentence (1) by the following:
“(d) the trap arms of the WCs connected to a vertical pipe are connected downstream from all other fixtures,”;
(b.1) by replacing Clause (e) of Sentence (1) by the following:
“(e) trap arms and fixture drains do not exceed 2 in in size when connected to a wet vent that extends above more than 1 storey, except for connections from emergency floor drains in accordance with Sentence 2.5.1.1.(3);”;
(b.2) by replacing “;Table 2.5.2.1”; in Clause (f) of Sentence (1) by “Article 2.5.8.1.”;”;;
(c) by replacing Clause (j) of Sentence (1) by the following:
“(j) the portion of the soil-or-waste stack including a wet vent that extends above more than one storey is the same size as its bottom to the uppermost connection of a fixture.”;
(d) by striking out Table 2.5.2.1.;
(28) in Article 2.5.8.1.,
(a) by replacing “Table 2.5.8.1.” in Sentence (1) by “Tables 2.5.8.1.A. and 2.5.8.1.B.”;
(b) by inserting the following before Table 2.5.8.1.:
“
Table 2.5.8.1.A
Maximum Permitted Hydraulic Loads
Drained to a Wet Vent Serving
Fixtures on the same Storey
Forming part of Sentence 2.5.8.1.(1)
_____________________________________________________________
| |
| Size of Wet Vent of a Maximum Hydraulic Loads, |
| Storey, inches fixture units |
|_____________________________________________________________|
| |
| 1 1/4 1 |
| 1 1/2 2 |
| 2 5 |
| 2 1/2 8 |
| 3 18 |
| 4 120 |
|_____________________________________________________________|
”;
(c) by replacing the title of Table 2.5.8.1. by “Table 2.5.8.1.B.”;
(29) in Article 2.6.1.1., by adding the following after Sentence (3):
“(4) In a hot water distribution system with a recirculation loop, the temperature of the water in the loop shall not be less than 55 °C when the water is circulating. (See note A-2.6.1.12.(1).)
(5) The recirculation loop referred to in Sentence (4) may operate intermittently.
(6) The recirculation loop referred to in Sentence (4) may be replaced by a self-regulating heat tracing system.”;
(30) in Sentence (10) of Article 2.6.1.7.,
(a) by replacing “The” in the part of the Sentence preceding Clause (a) by “Except as provided in Clause (d), the”;
(b) by replacing Clause (a) by the following:
“(a) be not less than 50 mm larger than the walls of the service water heater and have side walls not less than 75 mm high,”;
(c) by replacing “, and” in Clause (b) by “, without being less than 1 1/4 in,”;
(d) by inserting the following in Clause (c):
“(d) not be required to have a fixture drain where the relief valve discharge pipe conforms to Sentence (5).”;
(31) in Article 2.6.1.9., by replacing Sentence (1) by the following:
“(1) Water distribution systems shall be protected against water hammers by prefabricated water-hammer arresters.
(See Appendix A.)”;
(32) in Article 2.6.1.12., by replacing Sentence (1) by the following:
(1) The temperature control device of storage-type service water heaters shall be set so that the temperature of stored water is not less than 60 °C. (See Appendix A.)”;
(33) in Article 2.6.2.1., by adding the following after Sentence (3):
“(4) In the case of backflow preventers that, according to CSA B64.10, require testing after installation, the person testing the backflow preventers shall hold a certificate issued in accordance with section 4 of CSA B64.10.1. by an organization or association certified by AWWA.”;
(34) in Article 2.6.2.4.,
(a) by replacing Sentence (2) by the following:
“(2) Except as required by Sentence (4), potable water system connections to fire sprinkler and standpipe systems shall be protected against backflow caused by back-siphonage or back pressure in conformance with Clauses (a) to (g):
(a) residential partial flow-through fire sprinkler/standpipe systems in which the pipes and fittings are constructed of potable water system materials shall be protected by a dual check valve backflow preventer conforming to one of the following standards:
i) CAN/CSA-B64.6.1, Backflow Preventers, Dual Check Valve Type for Fire Systems (DuCF), or
ii) CAN/CSA-B64.6, Dual Check Valve (DuC) Backflow Preventers,
(b) Class 1 fire sprinkler/standpipe systems shall be protected by a single check valve backflow preventer or by a dual check valve backflow preventer, provided that the systems do not use antifreeze or other additives of any kind and that the pipes and fittings are constructed of potable water system materials. The backflow preventer shall conform to one of the following standards:
i) CAN/CSA-B64.9, Single Check Valve Backflow Preventers for Fire Protection Systems (SCVAF), or
ii) CAN/CSA-B64.6, Dual Check Valve (DuC) Backflow Preventers,
(c) Class 1 fire sprinkler/standpipe systems not covered by Clause (b) as well as Class 2 and Class 3 fire sprinkler/standpipe systems shall be protected by a double check valve backflow preventer, provided that the systems do not use antifreeze or other additives of any kind. The backflow preventer shall conform to one of the following standards:
i) CAN/CSA-B64.5.1, Double Check Valve Backflow Preventers for Fire Protection Systems (DCVAF), or
ii) CAN/CSA-B64.5, Double Check Valve (DCVA) Backflow Preventers,
(d) Class 1, Class 2 and Class 3 fire sprinkler/standpipe systems in which antifreeze or other additives are used shall be protected by a reduced pressure principle backflow preventer, installed on the portion of the system that uses the additives and the balance of the system shall be protected as required by Clauses (b) or (c). The backflow preventer shall conform to one of the following standards:
i) CAN/CSA-B64.4.1, Reduced Pressure Principle Backflow Preventers for Fire Protection Systems (RPF), or
ii) CAN/CSA-B64.4, Reduced Pressure Principle (RP) Backflow Preventers,
(e) Class 4 and Class 5 fire sprinkler/standpipe systems shall be protected by a reduced pressure principle backflow preventer conforming to one of the following standards:
i) CAN/CSA-B64.4.1, Reduced Pressure Principle Backflow Preventers for Fire Protection Systems (RPF), or
ii) CAN/CSA-B64.4, Reduced Pressure Principle (RP) Backflow Preventers,
(f) Class 6 fire sprinkler/standpipe systems shall be protected by a double check valve backflow preventer conforming to one of the following standards:
i) CAN/CSA-B64.5.1, Double Check Valve Backflow Preventers for Fire Protection Systems (DCVAF), or
ii) CAN/CSA-B64.5, Double Check Valve (DCVA) Backflow Preventers,
(g) Where a potentially severe health hazard may be caused by backflow, Class 6 fire sprinkler/standpipe systems shall be protected by a reduced pressure principle backflow preventer conforming to one of the following standards:
i) CAN/CSA-B64.4.1, Reduced Pressure Principle Backflow Preventers for Fire Protection Systems (RPF), or
ii) CAN/CSA-B64.4, Reduced Pressure Principle (RP) Backflow Preventers.
(See Appendix A.)”;
(b) by replacing Sentence (4) by the following:
“(4) Where a reduced pressure principle backflow preventer is required on a water service pipe at a fire service connection located on the same premises as the fire service pipe in Class 3, 4, 5 and 6 fire sprinkler/standpipe systems, a reduced pressure principle backflow preventer shall also be required on the fire service connection and conform to one of the following standards:
i) CAN/CSA-B64.4.1, Reduced Pressure Principle Backflow Preventers for Fire Protection Systems (RPF), or
ii) CAN/CSA-B64.4, Reduced Pressure Principle (RP) Backflow Preventers.”;
(35) in Article 2.7.3.2., by replacing Clause (a) of Sentence (1) by the following:
“(a) a sink or lavatory, except in the case of a seasonal tourist establishment referred to in Chapter V.1 of the Regulation respecting the quality of drinking water.”;
(36) in Table 2.8.1.1. of Article 2.8.1.1.,
(a) by adding the following after Article 2.1.3.2.:
_________________________________________________________________________________
| |
| 2.1.4.1. Structural Movement |
|_________________________________________________________________________________|
| | |
|(1) | [F23, F43-OS3.4] |
| |_______________________________________|
| | |
| | [F23-OH1.1, OH2.1, OH2.4, OH5] |
| |_______________________________________|
| | |
| | [F43-OH2.1, OH2.4, OH5] |
| |_______________________________________|
| | |
| | [F23, F43-OP5] |
|_________________________________________|_______________________________________|
”;
(a.1) by adding the following after Sentence (5) of Article 2.2.3.1.:
“
_________________________________________________________________________________
| | |
|(6) | [F81-OH1.1] |
|_________________________________________|_______________________________________|
”;
(b) by adding the following after Sentence 2.2.3.2.(2):
“
_________________________________________________________________________________
| | |
|(3) | [F81-OH2.1,OH2.3,OH 2.4] [F46-OH2.2] |
|_________________________________________|_______________________________________|
”;
(c) by adding the following after Sentence 2.2.5.13.(2):
“
_________________________________________________________________________________
| | |
|(3) | [F20-OP5] |
|_________________________________________|_______________________________________|
”;
(d) by adding the following after Article 2.2.6.9.:
“
_________________________________________________________________________________
| |
| 2.2.6.10. Stainless Steel Pipes |
|_________________________________________________________________________________|
| | |
|(1) | [F80-OH2.1,OH2.3,OH1.1] applies to |
| | drainage systems and ventilation |
| | systems |
| |_______________________________________|
| | |
| | [F46-OH2.2] applies to water systems |
| |_______________________________________|
| | |
| | [F80-OP5] |
|_________________________________________|_______________________________________|
”;
(e) by replacing Sentences 2.2.9.2.(4) and 2.2.9.2.(5) by the following:
“
_________________________________________________________________________________
| | |
|(4) | [F80-OH2.1,OH2.3,.1] |
| |_______________________________________|
| | |
| | [F80-OP5] |
|_________________________________________|_______________________________________|
”;
(f) by replacing Article 2.2.10.13. by the following:
“
_________________________________________________________________________________
| |
| 2.2.10.13. Service Water Heater |
|_________________________________________________________________________________|
| | |
|(1) | [F46-OH2.2] |
|_________________________________________|_______________________________________|
| | |
| | [F80,F81-OP5] |
|_________________________________________|_______________________________________|
| | |
| | [F31, F81-OS3.2] |
|_________________________________________|_______________________________________|
| | |
| | [F43-OS3.4] |
|_________________________________________|_______________________________________|
”;
(g) by adding the following after Article 2.2.10.16.(1):
“
_________________________________________________________________________________
| |
| 2.2.10.17. Potable Water Treatment Units |
|_________________________________________________________________________________|
| | |
|(1) | [F70,F81,F46-OH2.1, OH2.2, OH2.3] |
|_________________________________________|_______________________________________|
| | |
|(2) | [F70,F81,F46-OH2.1, OH2.2, OH2.3] |
|_________________________________________|_______________________________________|
| | |
|(3) | [F70,F81,F46-OH2.1, OH2.2, OH2.3] |
|_________________________________________|_______________________________________|
| | |
|(4) | [F70,F81,F46-OH2.1, OH2.2, OH2.3] |
|_________________________________________|_______________________________________|
| | |
|(5) | [F70,F81,F46-OH2.1, OH2.2, OH2.3] |
|_________________________________________|_______________________________________|
| |
| 2.2.10.18. Backwater Valves |
|_________________________________________________________________________________|
| | |
|(1) | [F80-OH2.1] |
|_________________________________________|_______________________________________|
| |
| 2.2.10.19. Floor Drains and Shower Drains |
|_________________________________________________________________________________|
| | |
|(1) | [F80-OH2.1,OH2.4] |
|_________________________________________|_______________________________________|
| |
| 2.2.10.20. Roof Drains |
|_________________________________________________________________________________|
| | |
|(1) | [F80-OP5] |
| |_______________________________________|
| | |
| | [F80-OS2.1] |
|_________________________________________|_______________________________________|
| |
| 2.2.10.21. Trap Seal Primers |
|_________________________________________________________________________________|
| | |
|(1) | [F80-OH1.1] |
|_________________________________________|_______________________________________|
| |
| 2.2.10.22. Air Gaps |
|_________________________________________________________________________________|
| | |
|(1) | [F80-OH2.1,OH2.2, OH2.3] |
|_________________________________________|_______________________________________|
| |
| 2.2.10.23. Pipe Hangers and Supports |
|_________________________________________________________________________________|
| | |
|(1) | [F20-OH2.1] |
| |_______________________________________|
| | |
| | [F20-OS3.1] |
| |_______________________________________|
| | |
| | [F80-OP5] |
|_________________________________________|_______________________________________|
”;
(h) by adding the following after Sentence 2.3.3.10.(1):
“
_________________________________________________________________________________
| | |
|(2) | [F20, F80-OP5] |
|_________________________________________|_______________________________________|
| | |
|(3) | [[F20, F80-OP5] |
|_________________________________________|_______________________________________|
”;
(i) by adding the following after Sentence 2.3.4.1.(3):
“
_________________________________________________________________________________
| | |
|(4) | [F20-OH2.1, OH2.4] |
| |_______________________________________|
| | |
| | [F20-OP5] |
| |_______________________________________|
| | |
| | [F20-OS3.1] |
|_________________________________________|_______________________________________|
”;
(j) by adding the following after Sentence 2.4.2.1.(4):
“
_________________________________________________________________________________
| | |
|(5) | [F81-OH1.1] |
|_________________________________________|_______________________________________|
| | |
|(6) | [F81-OH1.1] |
|_________________________________________|_______________________________________|
| | |
|(7) | [F81-OH1.1] |
|_________________________________________|_______________________________________|
| | |
|(8) | [F81-0H1.1] |
|_________________________________________|_______________________________________|
”;
(k) by adding the following after Article 2.4.3.6.:
“
_________________________________________________________________________________
| |
| 2.4.3.7. Retention Pit |
|_________________________________________________________________________________|
| | |
|(1) | [F60,F61-OH1.1] |
|_________________________________________|_______________________________________|
| | |
|(2) | [F81-OH1.1,OH2.1] |
|_________________________________________|_______________________________________|
| | |
|(3) | [F81-OH1.1] |
|_________________________________________|_______________________________________|
| | |
|(4) | [F81-OH1.1] |
|_________________________________________|_______________________________________|
| | |
|(5) | [F40-OH1.1] |
| |_______________________________________|
| | |
| | [F30-OS3.1] |
|_________________________________________|_______________________________________|
| | |
|(6) | [F81-OH2.1, OH2.3] |
| |_______________________________________|
| | |
| | [F81-OP5] |
|_________________________________________|_______________________________________|
| | |
|(7) | [F81-OH2.1, OH2.2] |
| |_______________________________________|
| | |
| | [F72-OH2.1] |
|_________________________________________|_______________________________________|
| | |
|(8) | [F81-OH2.1] |
|_________________________________________|_______________________________________|
| | |
|(9) | [F72-OH2.1] |
| |_______________________________________|
| | |
| | [F81-OS2.1] |
| |_______________________________________|
| | |
| | [F81-OP5] |
|_________________________________________|_______________________________________|
| | |
|(10) | [F81-OH2.1] |
|_________________________________________|_______________________________________|
| | |
|(11) | [F81-OH1.1] |
|_________________________________________|_______________________________________|
”;
(l) by adding the following after Sentence 2.4.5.4.(1):
“
_________________________________________________________________________________
| | |
|(2) | [F81-OH2.1] |
|_________________________________________|_______________________________________|
”;
(m) by adding the following after Sentence 2.4.5.5.(1):
“
_________________________________________________________________________________
| | |
|(2) | [F81-OH1.1] |
|_________________________________________|_______________________________________|
”;
(m.1) by striking out Article 2.4.6.5.”;
(n) by adding the following after Sentence 2.6.1.1.(3):
“
_________________________________________________________________________________
| | |
|(4) | [F40-OH1.1] |
|_________________________________________|_______________________________________|
| | |
| 6) | [F40-OH1.1] |
|_________________________________________|_______________________________________|
”;
(37) (paragraph revoked);
(38) by replacing Figure A-2.4.2.1.(2) in note A-2.4.2.1.(2) by the following:
(39) by adding the following after note A-2.4.2.1.(4):
A-2.4.2.1.(7) and (8) Suds Pressure Zones Connections
Figure A-2.4.2.1.(7) and (8)
Suds Pressure Zones Connections.”;
(40) by adding the following after note A-2.4.3.3.(1):
(41) in note A-2.4.5.3.(1),
(a) by striking out “A trap or sump may be provided specifically for the subsoil drains, or the trap of a floor drain or storm water sump as shown in Figure A-2.4.5.3.(1) may be used.”;
(b) by replacing Figure A-2.4.5.3.(1) by the following:
Figure A-2.4.5.3.(1) Subsoil Drainage Connection
(42) by striking out note A-2.4.5.4.(1);
(43) in note A-2.4.5.5.(1), by striking out “Periodic manual replenishment of the water in a trap is considered to be an equally effective means of maintaining the trap seal in floor drains in residences.”;
(44) by adding the following after note A-2.4.5.5.(1):
“A-2.4.5.5.(2) Maintaining Trap Seals in Floor Drains in Dwelling Units. Periodic manual replenishment of the water in a trap maintains the trap seal in floor drains in dwelling units.”;
(45) in note A-2.4.8.2.(1)
(a) by replacing Figure A-2.4.8.2.(1) by the following:
(b) by replacing the title of Figure A-2.4.8.2.(1) by the following:
“Figure A-2.4.8.2.(1)
Island Fixture Installation.”;
(46) in notes A-2.5.2.1 and 2.5.3.1.,
(a) by replacing Figures A-2.5.2.1. and 2.5.3.1.-C by the following:
(b) by replacing Figures A-2.5.2.1. and 2.5.3.1.-E by the following:
(c) by replacing Figures A-2.5.2.1. and 2.5.3.1.-F by the following:
(d) by replacing Figures A-2.5.2.1. and 2.5.3.1.-L by the following:
(47) by replacing note A-2.6.1.12.(1) by the following:
“A-2.6.1.12.(1) Service Water Heater
Water in a service water heater or a distribution system at a temperature not more than 60 °C permits Legionella bacteria to survive and thrive. Water heated at a temperature equal to or greater than 60 °C reduces bacterial contamination of the hot water distribution system. To do so, the thermostat must be set at different temperatures depending on the type of service water heater.”.